
ABSTRACT
Software development for an embedded Linux system in most cases requires a free license of GCC (GNU C/C++ compiler) and accessories. Many developers find it disconcerting that the GNU tools are primarily available for Linux-based PCs. Any attempt to make GCC run under Windows in order to program an embedded Linux system has been fraught with problems until now. The popular Cygwin â€œ as a Unix/Linux emulation environment under Windows â€œ is much too slow and in most cases causes significant library and version conflicts. Despite the high costs, commercial attempts by some companies to provide GCC as a Windows application have not lead to any practical solutions Without some effort, this technically straightforward solution is not feasible for large companies in particular, because an IT department is responsible for the PCs.. In this report weâ„¢ll describe Cooperative Linux, a port of the Linux kernel that allows it to run as an unprivileged lightweight virtual machine in kernel mode, on top of another OS kernel. It allows Linux to run under any operating system that supports loading drivers, such as Windows or Linux, after minimal porting efforts Among the technical details Iâ„¢ll present the CPU-complete context switch code, hardware Cooperative Linux 6 interrupt forwarding, the interface between the host OS and Linux, and the management of the VMâ„¢s pseudo physical RAM. An alternative to using a Linux PC is a free license of Cooperative Linux (coLinux).This Linux project is a new approach to getting the Linux kernel to run under Windows XP. CoLinux contains special Windows drivers, which allow it to run under Windows XP as a guest operating system with all privileges.
CHAPTER 1. Introduction

Cooperative Linux utilizes the rather underused concept of a Cooperative Virtual Machine (CVM), in contrast to traditional VM’s that are unprivileged and being under the complete control of the host machine. The term Cooperative is used to describe two entities working in parallel, e.g. coroutines. In that sense the most plain description of Cooperative Linux is turning two operating system kernels into two big coroutines. In that Mode, each kernel has its own complete CPU context and address space, and each kernel decides when to give control back to its partner.

However, only one of the two kernels has control on the physical hardware, where the other is provided only with virtual hardware abstraction. From this point on in the report I’ll refer to these two kernels as the host operating system, and the guest Linux VM respectively. The host can be every OS kernel that exports basic primitives that provide the Cooperative Linux portable driver to run in CPL0 mode (ring 0) and allocate memory.

The special CPL0 approach in Cooperative Linux makes it significantly different than traditional virtualization solutions such as VMware, plex86, Virtual PC, and other methods such as Xen. All of these approaches work by running the guest OS in a less privileged mode than of the host kernel. This approach allowed for the extensive simplification of Cooperative Linux’s design and its short early beta development cycle which lasted only one month, starting from scratch by modifying the vanilla Linux 2.4.23-pre9 release until reaching to the point where KDE could run. The only downside to the CPL0 approach is stability and security. If it’s unstable, it has the potential to crash the system. However, measures can be taken, such as cleanly shutting it down on the first internal Oops or panic. Another disadvantage is security. Acquiring root user access on a Cooperative Linux machine can potentially lead to root on the host machine if the attacker loads specially crafted kernel module or uses some very elaborated exploit in case which the Cooperative Linux kernel was compiled without module support.

Most of the changes in the Cooperative Linux patch are on the i386 tree—the only supported architecture for Cooperative at the time of this writing. The other changes are mostly additions of virtual drivers: cobd (block device), conet (network), and cocon (console). Most of the changes in the i386 tree involve the initialization and setup code. It is a goal of the Cooperative Linux kernel design to remain as close as possible to the standalone i386 kernel, so all changes are localized and minimized as much as possible.

1.1 HISTORY
Dan Aloni originally started the development of Cooperative Linux based on similar work with User-mode Linux and LINE. He open sourced the software under the GNU General Public License. Other developers have since contributed various patches and additions to the software.

1.2 USES

Cooperative Linux in its current early state can already provide some of the uses that User Mode Linux provides, such as virtual hosting, kernel development environment, research, and testing of new distributions or buggy software. It also enabled new uses:

1.2.1 Relatively effortless migration path from Windows.
In the process of switching to another OS, there is the choice between Installing another computer, dual booting, or using a virtualization software. The first option costs money, the second is tiresome in terms of operation, But the third can be the most quick and easy method—especially if it’s free. This is where Cooperative Linux comes in. It is already used in workplaces to convert Windows users to Linux.

1•2.2 Adding Windows machines to Linux clusters.
The Cooperative Linux patch is minimal and can be easily combined with others such as the MOSIX or Open-MOSIX patches that add clustering capabilities to the kernel. This work in progress allows to add Windows machines to super-computer clusters, where one illustration could tell about a secretary Workstation computer that runs Cooperative Linux as a screen saver—when the secretary goes home at the end of the day.

1.2.3 Running an otherwise-dual-booted Linux system from the other OS.
The Windows port of Cooperative Linux allows it to mount real disk partitions as block devices. Numerous people are using this in order to access, rescue, or just run their Linux system from their ext3 or reiserfs file systems.

1.2.4 Using Linux as a Windows firewall on the same machine.
As a likely competitor to other out-of-the-box Windows firewalls, iptables along with a stripped-down Cooperative Linux system can potentially serve as a network firewall.

1.2.5 Linux kernel development / debugging / research and study on another operating systems.
Digging inside a running Cooperative Linux kernel, you can hardly tell the difference between it and a standalone Linux. All virtual addresses are the Same—Oops reports look familiar and the architecture dependent code works in the same manner excepts some transparent conversions, which are described in the next section in this report.
CHAPTER 2. DESIGN OVERVIEW

This section describes the basic methods behind Cooperative Linux, which include complete context switches, handling of hardware interrupts by forwarding, physical address translation and the pseudo physical memory RAM.

2.1 DEVICE DRIVER
The device driver port of Cooperative Linux is used for accessing kernel mode and using the kernel primitives that are exported by the host OS kernel. Most of the driver is OS independent code that interfaces with the OS dependent primitives that include page allocations, debug printing, and interfacing with user space.

When a Cooperative Linux VM is created, the driver loads a kernel image from a vmlinux file that was compiled from the patched kernel with CONFIG_COOPERATIVE. The vmlinux file doesn’t need any cross platform tools in order to be generated, and the same vmlinux file can be used to run a Cooperative Linux VM on several OS uses of the same architecture.

The VM is associated with a per-process resource—a file descriptor in Linux, or a device handle in Windows. The purpose of this association makes sense: if the process running the VM ends abnormally in any way, all resources are cleaned up automatically from a call back when the system frees the per-process resource.

2.2 PSEUDO PHYSICAL RAM
In Cooperative Linux, we had to work around the Linux MM design assumption that the entire physical RAM is bestowed upon the kernel on startup, and instead, only give Cooperative Linux a fixed set of physical pages, and then only do the translations needed for it to work transparently in that set. All the memory which Cooperative Linux considers as physical is in that allocated set, which we call the Pseudo Physical RAM.

The memory is allocated in the host OS using the appropriate kernel function alloc pages in Linux and MmAllocatePagesForMdl in Windows So it is not mapped in any address space on the host for not wasting PTEs. The allocated pages are always resident and not freed until the VM is downed.

Page tables are created for mapping the allocated pages in the VM’s kernel virtual address space. The VM’s address space resembles the address space of a regular kernel—the normal RAM zone is mapped contiguously at 0xc0000000.

The VM address space also has its own special fix maps—the page tables themselves are mapped at 0xfef00000 in order to provide an O(1) ability for translating PPRAM (Pseudo-Physical RAM) addresses to physical addresses when creating PTEs for user space and vmalloc() space. On the other way around, a special physical-to-PPRAM map is allocated and mapped at 0xff000000, to speed up handling of events such as pages faults which require translation of physical addresses to PPRAM address. This bi-directional memory address mapping allows for a negligible overhead in page faults and user space mapping operations.

2.3 CONTEXT SWITCHING
The Cooperative Linux VM uses only one host OS process in order to provide a context for itself and its processes. That one process, named colinux-daemon, can be called a Super Process since it frequently calls the kernel driver to perform a context switch from the host kernel to the guest Linux kernel and back. With the frequent (HZ times a second) host kernel entries, it is able able to completely control the CPU and MMU without affecting anything else in the host OS kernel.

On the Intel 386 architecture, a complete context switch requires that the top page directory table pointer register—CR3—is changed. However, it is not possible to easily change both the instruction pointer (EIP) and CR3 in one instruction, so it implies that the code that changes CR3 must be mapped in both contexts for the change to be possible.

It’s problematic to map that code at the same virtual address in both contexts due to design limitations—the two contexts can divide the kernel and address space differently, such that one virtual address can contain a kernel mapped page in oneOS and a user mapped page in another.

In Cooperative Linux the problem was solved by using an intermediate address space during the switch (referred to as the ‘passage page,’see Figure 6.1). The intermediate address space is defined by a specially created page tables in both the guest and host contexts and maps the same code that is used for the switch (passage code) at both of the virtual addresses that are involved. When a switch occurs, first CR3 is changed to point to the intermediate address space. Then, EIP is relocated to the other mapping of the passage code using a jump. Finally, CR3 is changed to point to the top page tabledirectory of the other OS.

[image: image1.png]Guest Linux Intermediate Host OS

OxFFFFFFFF

—

T

/. —

0k80000000

Fig 2.3.1: Address space transition during an OS cooperative kernel
 switch, using an intermapped page. The single MMU page that contains the passage page code, also contains the saved state of one OS while the other is executing. Upon the beginning of a switch, interrupts are turned off, and a current state is saved to the passage page by the passage page code. The state includes all the general purpose registers, the segment registers, the interrupt descriptor table register (IDTR), the global descriptor table (GDTR), the local descriptor register (LTR), the task register (TR), and the state of the FPU / MMX / SSE registers. In the middle of the passage page code, it restores the state of the other OS and interrupts are turned back on. This process is akin to a “normal” process to process context switch. Since control is returned to the host OS on every hardware interrupt (described in the following section), it is the responsibility of the host OS scheduler to give time slices to the Cooperative Linux VM just as if it was a regular process.

2.4 INTERRUPT HANDLING AND FORWARDING
Since a complete MMU context switch also involves the IDTR, Cooperative Linux must set an interrupt vector table in order to handle the hardware interrupts that occur in the system during its running state. However, Cooperative Linux only forwards the invocations of interrupts to the host OS, because the latter needs to know about these interrupts in order to keep functioning and support the coLinux-daemon process itself, regardless to the fact that external hardware interrupts are meaningless to the Cooperative Linux virtual machine.

The interrupt vectors for the internal processor exceptions (0x0–0x1f) and the system call vector (0x80) are kept like they are so that Cooperative Linux handles its own page faults and other exceptions, but the other interrupt vectors point to special proxy ISRs (interrupt service routines). When such an ISR is invoked during the Cooperative Linux context by an external hardware interrupt, a context switch is made to the host OS using the passage code. On the other side, the address of the relevant ISR of the host OS is determined by looking at its IDT.An interrupt call stack is forged and a jump occurs to that address. Between the invocation of the ISR in the Linux side and the handling of the interrupt in the host side, the interrupt flag is disabled.

The operation adds a tiny latency to interrupt handling in the host OS, but it is quite neglectable. Considering that this interrupt forwarding technique also involves the hardware timer interrupt, the host OS cannot detect that its CR3 was hijacked for a moment and therefore no exceptions in the host side would occur as a result of the context switch.

CHAPTER 3. INSTALLATION

If you have something different, than an Intel compatible CPU with either a Windows XP or a Windows 2000 based operating system, coLinux will not work. You should also have the latest service pack installed.

The CoLinux system comes as a tar file that contains a basic subset of components.

• The Windows CoLinux driver

• A linux kernel vmlinux

• One or more file system images.

o Root file system

o Swap file

o Other file systems

• A configuration file.

• A program that creates empty files of arbitrary size: mkFile.exe
If you have a virus scanner with on-access scanning, you should make sure that it is disabled or doesn’t touch the directory, where you want to install coLinux.

If you have downloaded the installer package v.95 from http://blackfin.uclinux.org/projects/bfin-colinux, you must not unzip it in a directory, which has white spaces in its path.

On the Windows machine in which CoLinux is being installed create a root folder(e.g. colinux) where the proper files and subdirectories will be located. Now make sure that you have the following files located in these specific directories:

/colinux/coLinux_setup_rc6.exe
/colinux/readme.doc
/colinux/extra/PuTTY-setup.exe
/colinux/extra/Xming-setup.exe
/colinux/sources/colinux-0.7.1-hn4.src
/colinux/sources/file-utils
/colinux/images/tardump.tgz
If installing from a CD then you do not have to copy the files to your hard drive as described above. You may simply run the installation from the CD by running the coLinux_setup_rc6.exe.

Now to start the installation procedure, double click the coLinux_setup_rc6.exe icon in the colinux directory. You should receive a welcome screen that looks like this:

[image: image2.emf]
Now Click on the Next button.

You will then be brought to the coLinux Licenses agreement screen.

[image: image3.emf]
Here you should read the documentation and accept the agreement and then click Next if you wish to continue.

You will then be brought to an information screen which provides the following warning:

You should know, that this software installs a Windows kernel driver, that loads a Linux kernel to run aside the Windows kernel.

This software can destabilize or crash your system!!

You should therefore not use software or edit data, that is vital for you or your business, while running coLinux.

After you have read this click the Next button to continue the installation.

You will then be prompted for the directory that you want bfin-colinux installed in (the default is C:\bfin-coLinux).

You should select a drive that has at least 3.2 GB of space left, because coLinux doesn’t use a partition, but stores everything inside two files (rootfs.img and homefs.img) on the windows file system. Due to a coLinux problem the path of the coLinux installation must not contain any spaces.

After entering this information click the Next button.

Next you will be brought to the Ram and block size selection screen.

[image: image4.emf]
Here you have to select the size of the actual installation and the amount of RAM, coLinux should use. The coLinux RAM is exclusively used by coLinux and will no longer be available for Windows (only as long as coLinux runs). You should reserve as much as possible, where a minimum should be 128MB. You have to remember, that Windows also needs RAM and it should have at least 128MB left. For example if you have 256MB, you could try to use 128MB (It is possible, that Windows would not allow coLinux to use that much RAM. If that is the case, try 96MB). If you have 512MB then 256MB or 320MB would be a good idea. Also you should remember that if Windows does not have enough RAM for smooth operation then it will slow coLinux down and could destabilize your system. Also you should not run unnecessary Windows software, while working with coLinux. You should also select a bigger swap size than you have selected the RAM size. The coLinux standard installation uses about 750MB space on the rootfs. So you should at least select 1GB for the root file system. If you want to install additional software, you should select it bigger. For the home filesystem, you should select at least select 1.8GB, since you will be installing the uClinux distribution here.

The next step is to select an IP address for coLinux and install the tuntap driver.

[image: image5.emf]
If this is your first coLinux installation, you should check the Install a TAP driver box and select an IP address for the Windows side of the TAP. It should be an address in a not yet routed class C subnet in the address space of 10.xxx.xxx.xxx or 172.16.xxx.xxx or 192.168.xxx.xxx. (An example of a class C network is 10.12.12.xxx).

There is also an option for serial support. If you activate it, you should also select the right COM port. You should also know, that the console will block, while using the serial port. So you have to use a xterm or PuTTY, while working with the serial port. Now you may hit the Next button to move on with the installation.

In the next step you can select a different start menu folder name. After you have done this hit Next.

The final step allows you to select additional tasks to install. If this is your first installation, you should select the PuTTY ssh client and the Xming X-Server to be installed. You can also select the profile for PuTTY and the service if you want.

[image: image6.emf]
If you confirm the installation by hitting Next and then Install, the setup starts. You can see how the installer installs some files. After a few seconds a new window opens. This is the coLinux console. This is part of the installation process. You are now seeing a small Linux system that installs the main system. This will take some time. After a few minutes the window closes and the setup continues with the PuTTY and Xming installation. Maybe Windows asks you if you want to install a driver which is not certified by Microsoft. You should answer this with Yes. When the additional software components have been installed, the coLinux setup shows some information and then goes to the login in screen. Now you have successfully installed coLinux.

3.1 COLINUX BASICS
The system consists of a set of Windows drivers linux.sys.

The colinux-daemon.exe --install-driver command will set up the Windows system.

Use colinux-daemon.exe -–remove-driver to remove the drivers

Then a CoLinux executable can be run to start the linux virtual machine. This system requires the folowing:

• A config file

• A Linux Kernel

• An initial Ram Disk.

A full system will also need some disk images:

• A root file system image

• A swap partition

• One or more additional images.

In this example system the images are compressed and will have to be uncompressed using a “stand alone” CoLinux boot.

CoLinux Root Pasword
The CoLinux root password is bf533.

3.2 COLINUX CONFIGURATIONS
kernel=vmlinux
this specifies the kernel to be used
mem=120
this is the system virtual memory
initrd=.\initrd.gz
this is the initial ram disk
cobd0=.\root.img
specify partition /dev/cobd0 to point to this file
cobd1=.\home.img
specify partition /dev/cobd1 to point to this file
cobd2=.\swap.img
specify partition /dev/cobd2 to point to this file
cofs0=c:\
specify device /dev/cofs0 to point to the c: drive
root=/dev/cobd0
specify the mounted root file system.
this can be overridden in the example shown.
eth0=slirp,"",tcp:333:22/tcp:1000:1000/udp:69:69
set up an ethernet connection using the windows host.
devices on ports
tcp 333:22 (ssh)
tcp 1000:1000 (webmin)
udp 69:69 (tftp)
are assigned to services running under the CoLinux virtual machine.
eth1=tuntap
set up ether1 to work with the tap controller
cofs1=.
set up cofs01 to be the current working directory
cofs2=d:\
set up cofs02 to be the CD
You can just add additional cofs entries for other drives or directories.
But you should know, that if you add a directory like cofsxx=j:\somepath you must
not add a trailing backslash. Only if you reference a drive like cofsxx=j:\ then you
have to add a trailing backslash

This config file has to work with the /etc/fstab on the root file system image.

Here is a typical example:

With just a few of these components CoLinux can be run in a stand alone mode.

In the above example config file the CoLinux working directory can be mounted as follows:

Doing this will allow the use of Linux commands to manipulate the installation kit. For example to uncompress images after booting in stand alone mode and mounting the CoLinux image:

<file system> <mount point> <type> <foptions>
/dev/cobd0 / ext3 defaults 0 0
proc /proc proc defaults 0 0
tmpfs /dev/shm tmpfs defaults 0 0
/dev/cobd2 swap swap defaults 0 0
/dev/cobd1 /home ext3 defaults 0 0
cofs00 /windows cofs defaults,noatime 0 0
You can simply add your cofs drives with a simple entry like:
cofsxx /mountpint cofs defaults,noatime 0 0
You can also use additinal options like "noauto", if you want to mount
the fs manually or "user", if you want the filesystem be user mountable.
colinux-daemon.exe @config.txt root=/dev/ram0
mkdir -p /colinux
mount -t cofs cofs01 /colinux
gunzip /colinux/swap.img.gz
gunzip /colinux/home.img.gz
gunzip /colinux/root.img.gz

3.3 DISK IMAGES
There are two ways to create disk images with CoLinux, one uses a Windows based tool, the other is the “standard” Linux method. The Linux method only runs under a Linux System.

There is a mkFile.exe utility that can be used under Windows to build an image.

This file will then have to be populated within CoLinux but the image mysys.img can be mounted within CoLinux if it is defined in the CoLinux config file.

In the CoLinux virtual machine:

The normal Linux way to make a blank disk image is as follows:

At a Windows command prompt
example to create a 2G file
mkFile -m mysys.img 2000
this is the entry in the config.txt file
cobd4=.\mysys.img
specify partition /dev/cobd4 to point to this file
first create an ext2 file system on the disk image
mke2fs -F /dev/cobd4
#turn this into an ext3 filesystem
tune2fs -i 0 -j /dev/cobd4
then under CoLinux
mkdir -p /mymnt
mount /dev/cobd4 /mymount
dd if=/dev/zero of=mysys.img bs=1k count=2048k

3.3.1 Starting a Colinux Session
To avoid errors during initialization, the following CoLinux startup order is recommended:

To tftp the kernel to the stamp board you must disable the coorporate firewall:

A crossover cable, hub or switch does work.

3.3.2 Stopping a Colinux Session
When you are ready to end your colinux session, in super user mode, type ‘shutdown -h now’ within the main console. Wait until the main console prints ‘Power down’ before closing all linux windows. This shut down procedure will allow Colinux to start up normally the next time without a reboot.

1. Start Xming
2. Start Blackfin-coLinux (Colinux main console)
3. Login = uclinux
passwd = bf533
4. Start bfin-uclinux (Putty console)
5. passwd = bf533
start konsole or xterm (in background) from Putty console
6. Launch minicom from the konsole or xterm terminal
Goto Control Panel ->
Administrative Tools ->
Component Services ->
Services Local ->
Sygate Security Agent ->
Under Properties, DISABLE firewall &
Restart your PC

 The following commands can be used to terminate a CoLinux session (in super user mode):

• halt
• shutdown -h now
Both of these will Power Down the virtual machine. The CoLinux Console can then be closed using the Quit command.
CHAPTER 4. FEATURES

Since Cooperative Linux is a new project, most of its features are still waiting to be implemented.

4.1 SUSPENSION
Software-suspending Linux is a challenge on standalone Linux systems, considering the entire state of the hardware needs to be saved and restored, along with the space that needs to be found for storing the suspended image. On User Mode Linux suspending [3] is easier only the state of a few processes needs saving, and no hardware is involved.

However, in Cooperative Linux, it will be even easier to implement suspension, because it will involve its internal state almost entirely. The procedure will involve serializing the pseudo physical RAM by enumerating all the page table entries that are used in Cooperative Linux, either by itself (for user space and vmalloc page tables) or for itself (the page tables of the pseudo physical RAM), and change them to contain the pseudo value instead of the real value.

The purpose of this suspension procedure is to allow no notion of the real physical memory to be contained in any of the pages allocated for the Cooperative Linux VM, since Cooperative Linux will be given a different set of pages when it will resume at a later time. At the suspended state, the pages can be saved to a file and the VM could be resumed later. Resuming will involve loading that file, allocating the memory, and fix-enumerate all the page tables again so that the values in the page table entries point to the newly allocated memory.

Another implementation strategy will be to just dump everything on suspension as it is, but on resume—enumerate all the page table entries and adjust between the values of the old RPPFNs2 and new RPPFNs. Note that a suspended image could be created under one host OS and be resumed in another host OS of the same architecture. One could carry a suspended Linux on a USB memory device and resume/suspend it on almost any computer.

4.2 USER MODE LINUX INSIDE COOPERATIVE LINUX

The possibility of running UML inside Cooperative Linux is not far from being immediately possible. It will allow to bring UML with all its glory to operating systems that cannot support it otherwise because of their user space APIs. Combining UML and Cooperative Linux cancels the security downside that running Cooperative Linux could incur.

4.3 LIVE COOPERATIVE DISTRIBUTIONS
Live-CD distributions like KNOPPIX can be used to boot on top of another operating system and not only as standalone, reaching a larger sector of computer users considering the host operating system to be Windows NT/2000/XP.

4.4 INTEGRATION WITH REACTOS
ReactOS, the free Windows NT clone, will be incorporating Cooperative Linux as a POSIX subsystem.

4.5 MISCELLANEOUS
• Virtual frame buffer support.

• Incorporating features from User Mode Linux, e.g. humfs 3.

• Support for more host operating systems such as FreeBSD.
[image: image7.emf] FIGURE 4.5.1 Interaction between different tools.
4.6 CURRENT STATUS

 Version: 0.6.4

• Released on date: July 02, 2006
• Supported architectures:

o Intel-compatible 386 and above Supported operating systems:

􀂃 Windows 2000

􀂃 Windows XP

􀂃 Linux 2.6.x

• Supported guest Linux kernel versions:

o 2.6.11

CHAPTER 5. DISADVANTAGES

The biggest disadvantage is that coLinux runs aside the Windows kernel. It runs on the same hardware abstraction layer that is also called ring0. Inside this CPU abstraction layer, there is no hardware memory protection. This is the same situation as between the Linux or Windows kernel and their device drivers. So a problem in the Linux kernel can bring the Windows kernel down, if Linux violates the Windows address space. Also there are security implications. If a malice user gains root access inside coLinux he can compromise the security of the Windows system as well. Also to load and use coLinux the user has to have administrator rights. (There is the possibility to start coLinux as a service, so it is possible to start coLinux as a normal user, if the user has been granted the right to start the service)
CONCLUSION
We have discussed how Cooperative Linux works and its benefits. The coLinux is an economical and efficient possibility to program embedded Linux systems directly from a Windows PC. Cooperative Linux has the potential to become an alternative to User Mode Linux that enhances on portability and performance, rather than on security.

 Moreover, the implications that Cooperative Linux has on what is the media defines as ‘Linux on the Desktop’—are massive, as the world’s most dominant albeit proprietary desktop OS supports running Linux distributions for free, as another software, with the aimed for possibility that the Linux newbie would switch to the standalone Linux. As user friendliness of the Windows port will improve, the exposure that Linux gets by the average computer user can increase tremendously.
BIBLIOGRAPHY

[1] www.colinux.org/
[2] Donald E. Knuth. The Art of Computer Programming, volume 1.

[3] www.google.com/cooperative+linux/wiki
[4] www.dilnetpc.com
[5] www.en.wikipedia.org/wiki/colinux
[6] www.sourceforge.net/projets/coLinux
[7] www.hesperia.gsfc.nasa.gov/colinux
[8] www.user-mode-linux.sf.net
[9] www.google.co.in
1

